LETTERS

Unified Approach to Isoindolinones and THIQs via Lewis Acid Catalyzed Domino Mukaiyama–Mannich Lactamization/Alkylations: Application in the Synthesis of (\pm) -Homolaudanosine

Sivasankaran Dhanasekaran,[§] Anirban Kayet,[†] Arun Suneja,[†] Vishnumaya Bisai,[†] and Vinod K. Singh^{*,†,§}

[†]Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, MP 462 066, India [§]Department of Chemistry, Indian Institute of Technology, Kanpur, UP 208 016, India

Supporting Information

ABSTRACT: A novel and efficient synthesis of a variety of isoindolinones and tetrahydroisoquinolines via a Lewis acid catalyzed domino Mukaiyama–Mannich lactamization/alkylation is achieved. This transformation comprises a sequential formation of three new bonds through a one-pot, three-component procedure to afford product in moderate to high yields. A concise synthesis of (\pm) -homolaudanosine (2b) has been achieved using this method.

eterocyclic compounds like isoindolinones (1a–d; Figure 1) and tetrahydroisoquinolines (THIQs 2a–d; Figure 1)

Figure 1. Selected active isoindolinones and THIQs.

are important structural scaffolds from a synthetic perspective. Substituted isoindolinones are useful advanced intermediates in the synthesis of a variety of drugs¹ and complex natural products.² Their biological properties such as antihypertensive,³ antipsychotic,⁴ anti-inflammatory,⁵ anesthetic,⁶ antiulcer,⁷ vaso-dilatory,⁸ antiviral,⁹ and antileukemic¹⁰ activities makes them attractive synthetic targets. Similarly, tetrahydroisoquinolines (THIQs **2a**–**d**)¹¹ exist widely in alkaloids and, because of their fascinating biological activities, they also attract special synthetic interest.

Existing approaches toward isoindolinone synthesis include Heck cyclization,¹² Diels–Alder approach,¹³ ring-closure of

hydrazones,¹⁴ reactions of acyliminium ion,¹⁵ exploitation of carbanion methodology,¹⁶ and various enantioselective approaches.^{17,18} On the other hand, synthesis of THIQs involves various multistep processes^{11,19} and few enantioselective processes.²⁰ Although few elegant approaches to these targets have been reported, there is still a need to develop a straightforward synthesis of isoindolinones and THIQs employing a common strategy from cheaply available simple starting materials. Toward this end, we recently reported an efficient allylation–lactamization/alkylation²¹ cascade in the synthesis of THIQ alkaloid (\pm)-crispine 2a. Herein, we envisioned an expeditious approach to these targets following a direct Lewis acid catalyzed domino Mukaiyama–Mannich lactamization/ alkylation of *o*-formyl methylbenzoates 3 and *o*-formyl-2-arylethyl bromide 8 to afford isoindolinones 6 and 7 and THIQs 9, respectively (Scheme 1).²²

Initially, we began our optimization studies by using *o*-formyl methylbenzoate **3a** and silyl enol ether **4a** in the presence of several potential catalysts to ultimately identify the most efficient catalytic system. We used *p*-methoxyphenylamine (PMPNH₂) as an amine component so as to obtain PMP-protected compound **6a**, which can be oxidatively cleaved,^{18,21,23} leading to an *N*-protecting group free isoindolinone. It was observed that 10 mol % of In(OTf)₃, Zn(OTf)₂, and Cu(OTf)₂ afforded the expected isoindolinone **6a** in 73–77% isolated yields along with uncyclized **10a** in 10–11% (entries 1–3, Table 1). We envisioned that conversion of **10a** to **6a** may depend on

 Received:
 April 23, 2015

 Published:
 May 20, 2015

Scheme 1. Proposed Mukaiyama–Michael Lactamization/ Alkylation

Table 1. Selected Optimization Studies^a

^{*a*}All of the reactions were performed with 1 equiv of aldehyde, 1 equiv of amine, and 1.3 equiv of silyl enol ether under argon atmosphere. ^{*b*}Isolated yields. ^{*c*}Reactions were carried out in the absence of TBAF. Conditions A: 10 mol % of $Zn(OTf)_2$. Conditions B: 10 mol % of $Cu(OTf)_2$.

inefficient deprotection of the N-silyl group, and thus, we decided to use TBAF as an additive in the reaction. Following exhaustive optimization (see the Supporting Information for details), we found that 10 mol % of $Zn(OTf)_2$ and $Cu(OTf)_2$ furnished 6a in 90-92% yields (entries 5 and 6). Other metal triflates such as In(OTf)₃, Sc(OTf)₃, and Bi(OTf)₃ also afforded 6a in 76-85% yields (entries 4, 7, and 8). A brief solvent studies showed that chloroform was the most efficient (see the Supporting Information for details). Gratifyingly, it was observed that 5 mol % of $Zn(OTf)_2$ and $Cu(OTf)_2$ also afforded 6a in 79– 80% yields (entries 9 and 10). On the basis of optimization studies, it was decided to carry out further studies using 10 mol % of $Zn(OTf)_2$ (conditions A) and $Cu(OTf)_2$ (conditions B) in combination with a stoichiometric amount of TBAF as an additive in chloroform at rt. Interestingly, a gram-scale synthesis of 6a under conditions A also afforded product in 75% (30 h) isolated yield (see the Supporting Information), thus making the strategy synthetically viable.

We then studied various amines in the domino Mukaiyama– Mannich lactamization. Gratifyingly, all aromatic amines, including electron-donating and electron-deficient ones, afforded isoindolinones 6b-g in 76–92% isolated yields (Figure 2). The X-ray structure analysis of 6d (CCDC no. 1057396) unambiguously proved the formation of an isoindolinone motif. Surprisingly, *ortho*-substituted anilines afforded only Mukaiyama–Mannich products 10b,c in 71–89% yields, probably indicating that the sterics at the *o*-position of the

Figure 2. Scope of reaction with various amines.

anilines might be inhibiting the formation of isoindolinones. Aliphatic amines such as allyl- and benzylamines were also found to be good substrates to furnish **6h**,**i** in 66–71% yields. However, electron-deficient amines such as p-TsNH₂ and CbzNH₂²⁴ were not suitable for the one-pot process, and only starting aldehyde **3a** was recovered in 85–89% yields.

Notably, 3,4-(methylenedioxy)aniline as amine partner afforded isoindolinone **61** only in 40–46% yields. In this case, however, we isolated quinoline **11a** in 25–28% yields under optimized conditions. Interestingly, 3,4-dimethoxyaniline, when used as aromatic amine, afforded quinolines **11b**,**c** as the sole products in 78–86% yields (Figure 3). A proposed mechanism for the synthesis of **11a–c** involving Mukaiyama–Mannich Friedel–Crafts alkylation–condensation followed by aerial oxidation is shown in Scheme 2.²⁵

Figure 3. Scope of reaction with various amines.

Later, the Mukaiyama–Mannich lactamization was carried out with differently substituted *o*-formyl methylbenzoate **3**, silyl enol ether **4a**, and PMPNH₂ under both conditions A and B (Figure 4). To our delight, a variety of *o*-formyl methylbenzoates containing various electronic natures at the 4- and 5-positions of **3** (Figure 4) afforded isoindolinones $7\mathbf{a}-\mathbf{h}$ in good to excellent yields. In addition, electron-donating groups at the 3- and 6positions of **3** also afforded products $7\mathbf{i}-\mathbf{l}$ in synthetically useful yields (65–89%, Figure 4).

Figure 4. Substrate scope of isoindolinone synthesis.

Next, a variety of silyl enol ethers were selected for the domino Mukaiyama–Mannich lactamization using different *o*-formyl methylbenzoates **3** and PMPNH₂ (Figure 4). Rewardingly, silyl enol ethers (see the Supporting Information for synthetic details) of acetophenone derivatives furnished isoindolinones 7m-r in synthetically useful yields. Silyl enol ethers of acetone afforded products 7s,t in 64–72% yields. The silyl enol ether of methyl acetate was also found to be a good substrate and afforded 7u-v in 72–85% yields, which could be an advanced intermediate for the synthesis of derivatives of medicinally important 1a-c in a few steps (Figure 1). Gratifyingly, our optimized strategy works fine with silyl enol ethers of 2-hydroxyfuran and cyclohexanone, which afforded products 7w and 7x in 60% (dr = 2.9:1) and 67% (dr = 5.5:1), respectively (Figure 4).

Next, we became interested in applying our strategy in the synthesis of C₁-substituted THIQs (Figure 1). Toward this end, we have utilized a variety of o-formyl-2-arylethyl bromides 8 in the presence of a few silyl enol ethers and PMPNH₂ (Scheme 3). To our delight, a variety of THIQs were synthesized under optimized conditions A and B, where TBAF was not essential. This is probably indicative of the high reactivity of the intermediate Mukaiyama-Mannich product toward ${\rm S_N}^2$ reactions, and thus, reaction times were also reduced as compared to isoindolinone synthesis. Our strategy can be applied further in the efficient synthesis of THIQs 9a-e in 78-87% isolated yields (Scheme 3). In particular, THIQ 9d could be an advanced intermediate for the syntheses of (\pm) -2a-c (Figure 1) following further synthetic elaboration. However, for a direct synthesis of (\pm) -2b,c, we synthesized silvl enol ethers of 3,4-dimethoxyacetophenone and 3,4,5-trimethoxyacetophenone (see the Supporting Information for procedure) and utilized them in

the synthesis of THIQs 9f,g (65–88% yields in 18 h). Gratifyingly, 9f was synthesized in gram scale under conditions A, which afforded THIQ in 65% (24 h) yield (see the Supporting Information). One of these THIQs, 9f, was then converted to 13 under reductive hydrogenolysis in the presence of a Pd–C, AcOH/TFA mixture to afford 13 in 75% yield (Scheme 3). This was later converted to (\pm)-2b in 78% yield following *N*-methylation using HCHO and NaBH₃CN, thus completing a concise total synthesis of (\pm)-homolaudanosine (2b).

Further, isoindolinones **6a** and **7m** were reacted with CAN to form protecting group free **15a**,**b** in 85–89% yield (Scheme 4).^{18,21} Unprotected isoindolinone **15b** was converted to **17a** in

Scheme 4. Synthetic Elaborations to Important Intermediates

70% yield under the Baeyer–Villiger oxidation conditions. Compound **15a** was further reduced with NaBH₄, followed by treatment with methanesulfonic acid (MsOH), which afforded **16** in 85% yield over two steps (Scheme 4). The latter was then hydrogenated to furnish medicinally important 1-alkylisoindolinone **17b** in 96% yield.

In another sequence, isoindolinone 16 on reductive ozonolysis afforded 17c, which has hydroxymethyl functionality in 78% yield (Scheme 4). The latter could be used for the syntheses of (\pm) -1a-c shown in Figure 1. Finally, the reactivity of the electron-donating PMP group of isoindolinone 6a was explored in the synthesis of tetracyclic tetrahydroquinoline derivative 14 following a two-step sequence (87% overall yield) via NaBH₄ reduction followed by treatment with methanesulfonyl chloride.

In summary, we have shown an efficient Mukaiyama– Mannich lactamization/alkylation sequence for an expeditious synthesis of a variety of isoindolinones and THIQs under mild conditions. A variety of silyl enol ethers were utilized, and the strategy is amenable to gram-scale syntheses of isoindolinone as well as THIQs. Electron-rich anilines like 3,4-(alkyloxy)anilines can afford substituted quinolines as well.²⁵ Applying this strategy, a concise total synthesis of (\pm) -homolaudanosine **2b** has been accomplished.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and analytical data (¹H, ¹³C NMR spectra and HRMS) for all new compounds, and X-ray data for **6d** (CIF). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b01197.

AUTHOR INFORMATION

Corresponding Author

*E-mail: vinodks@iitk.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support through the J. C. Bose fellowship (DST, Government of India) and SERB, DST (SB/FT/CS-011/2014), are gratefully acknowledged. We thank Ms. Anusha Upadhyay, IISER Bhopal, for X-ray structure analysis. S.D. and A.S. thank the CSIR, New Delhi, for SRF fellowships. Facilities from the Department of Chemistry, IISER Bhopal, and IIT Kanpur are gratefully acknowledged.

DEDICATION

This work is dedicated to Professor Tavarekere K. Chandrashekar on the occasion of his 60th birthday.

REFERENCES

(1) (a) Boger, D. L.; Lee, J. K.; Goldberg, J.; Jin, Q. *J. Org. Chem.* **2000**, 65, 1467. (b) Egbertson, M. S.; Hartman, G. D.; Gould, R. J.; Bednar, R. A.; Cook, J. J.; Gaul, S. L.; Holahan, M. A.; Libby, L. A.; Lynch, J. J.; Sitko, G. R.; Stranieri, M. T.; Vassallo, L. M. *Bioorg. Med. Chem. Lett.* **1996**, 6, 2519.

(2) (a) Pigeon, P.; Decroix, B. *Tetrahedron Lett.* 1997, 38, 2985.
(b) Abramovitch, R. A.; Shinkai, I.; Mavunkel, B. J.; More, K. M.; O'Connor, S.; Ooi, G. H.; Pennington, W. T.; Srinivasan, P. C.; Stowers, J. R. *Tetrahedron* 1996, *52*, 3339.

(3) Ferland, J.-M.; Demerson, C. A.; Humber, L. G. *Can. J. Chem.* **1985**, 63, 361.

(4) (a) Linden, M.; Hadler, D.; Hofmann, S. *Hum. Psychopharmacol.* **1997**, *12*, 445. (b) Zhuang, Z.-P.; Kung, M.-P.; Mu, M.; Kung, H. F. J. *Med. Chem.* **1998**, *41*, 157.

(5) Li, S.; Wang, X.; Guo, H.; Chen, L. Yiyano Gongue 1985, 16, 543; Chem. Abstr. 1986, 105, 6378n.

(6) Laboratori Baldacci, S.P.A. Japanese Patent 5,946,268, 1984; *Chem. Abstr.* **1984**, *101*, 54922.

(7) (a) Lippmann, W. U.S. Patent 4,267,189, 1981; *Chem. Abstr.* **1981**, 95, 61988m. (b) Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.; Wustrow, D. J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A. E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1499.

(8) Achinami, K.; Ashizawa, N.; Kobayasui, F. Japanese Patent 03,133,955, 1991; Chem. Abstr. 1991, 115, 255977j.

(9) (a) Pendrak, I.; Barney, S.; Wittrock, R.; Lambert, D. M.; Kingsbury, W. D. J. Org. Chem. **1994**, 59, 2623. (b) De Clercq, E. J. Med. Chem. **1995**, 38, 2491.

(10) (a) Taylor, E. C.; Zhou, P.; Jennings, L. D.; Mao, Z.; Hu, B.; Jun, J.-G. *Tetrahedron Lett.* **1997**, *38*, 521. (b) Riedinger, C.; Endicott, J. A.; Kemp, S. J.; Smyth, L. A.; Watson, A.; Valeur, E.; Golding, B. T.; Griffin,

R. J.; Hardcastle, I. R.; Noble, M. E.; McDonnell, J. M. J. Am. Chem. Soc. 2008, 130, 16038.

(11) (a) Corey, E. J.; Gin, D. Y.; Kania, R. S. *J. Am. Chem. Soc.* **1996**, *118*, 9202. (b) For a review, see: Chrzanowska, M.; Rozwadowska, M. D. *Chem. Rev.* **2004**, *104*, 3341.

(12) Grigg, R.; Dorrity, M. J. R.; Malone, J. F.; Mongkolaus-Savaratana, T.; Norbert, W. D. J. A.; Sridharan, V. *Tetrahedron Lett.* **1990**, *31*, 3075. (13) McAlonan, H.; Murphy, J. P.; Nieuwenhuyzen, M.; Reynolds, K.; Sarma, P. K. S.; Stevenson, P. J.; Thompson, N. J. Chem. Soc., Perkin Trans. 1 **2002**, 69 and references therein.

(14) (a) Enders, D.; Braig, V.; Raabe, G. Can. J. Chem. 2001, 79, 1528.
(b) Adachi, S.; Onozuka, M.; Yoshida, Y.; Ide, M.; Saikawa, Y.; Nakata, M. Org. Lett. 2014, 16, 358.

(15) (a) Bahajaj, A. A.; Vernon, J. M.; Wilson, G. D. *Tetrahedron* **2004**, 60, 1247. (b) Chen, M.-D.; Zhou, X.; He, M.-Z.; Ruan, Y.-P.; Huang, P.-Q. *Tetrahedron* **2004**, 60, 1651. (c) Sun, L. X.; Zeng, T.; Jiang, D.; Dai, L.-Y.; Li, C.-J. *Can. J. Chem.* **2012**, 90, 92.

(16) (a) Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95.
(b) Pérard, J.; Prangé, T.; Tomas, A.; Royer, J. Tetrahedron 2002, 58, 5103.

(17) (a) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G. Q. J. Am. Chem. Soc. 2007, 129, 5336. (b) Guo, S.; Xie, Y.; Hu, X.; Xia, C.; Huang, H. Angew. Chem., Int. Ed. 2010, 49, 2728. (c) Yang, G.; Shen, C.; Zahng, W. Angew. Chem., Int. Ed. 2012, 51, 9141. (d) Tiso, S.; Palombi, L.; Vignes, C.; Mola, A. D.; Massa, A. RSC Adv. 2013, 3, 19380.

(18) (a) Bisai, V.; Suneja, A.; Singh, V. K. Angew. Chem., Int. Ed. 2014, 53, 10737. (b) Bisai, V.; Unhale, R. A.; Suneja, A.; Dhanasekaran, S.; Singh, V. K. Org. Lett. 2015, 17, 2102.

(19) (a) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. *J. Am. Chem. Soc.* **2002**, *124*, 6552. (b) Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J. *J. Am. Chem. Soc.* **2006**, *128*, 87 and references cited therein.

(20) (a) Kitamura, M.; Hsiao, Y.; Ohta, M.; Tsukamoto, M.; Ohta, T.; Takaya, H.; Noyori, R. J. Org. Chem. **1994**, 59, 297. (b) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1996**, 118, 4916. (c) Ito, K.; Akashi, S.; Saito, B.; Katsuki, T. Synlett **2003**, 1809. (d) Li, Z.; Li, C.-J. Org. Lett. **2004**, 6, 4997. (e) Taylor, A. M.; Schreiber, S. L. Org. Lett. **2006**, 8, 143. (f) Li, Z.; MacLeod, P. D.; Li, C.-J. Tetrahedron: Asymmetry **2006**, 17, 590. (g) Itoh, T.; Miyazaki, M.; Fukuoka, H.; Nagata, K.; Ohsawa, A. Org. Lett. **2006**, 8, 1295.

(21) For our recent report on allylation-lactamization, see: Dhanasekaran, S.; Bisai, V.; Unhale, R. A.; Suneja, A.; Singh, V. K. Org. Lett. **2014**, *16*, 6068.

(22) (a) Kinast, G.; Tietze, L. F. Angew. Chem., Int. Ed. 1976, 15, 239.
(b) Tietze, L. F.; Rackelmann, N.; Müller, I. Chem. –Eur. J. 2004, 10, 2722.

(23) (a) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. *J. Am. Chem. Soc.* **2001**, *123*, 10409. (b) Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. **2008**, *130*, 5530.

(24) (a) Phukan, P. J. Org. Chem. 2004, 69, 4005. (b) Beisel, T.; Manolikakes, G. Org. Lett. 2013, 15, 6046.

(25) Elaboration of this domino reaction using various aromatic amines with electron-rich aromatics is under active investigation.