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ABSTRACT: A novel and efficient synthesis of a variety of isoindolinones and tetrahydroisoquinolines via a Lewis acid catalyzed
domino Mukaiyama—Mannich lactamization/alkylation is achieved. This transformation comprises a sequential formation of
three new bonds through a one-pot, three-component procedure to afford product in moderate to high yields. A concise
synthesis of (+)-homolaudanosine (2b) has been achieved using this method.

eterocyclic compounds like isoindolinones (1a—d; Figure hydrazones,"* reactions of acyliminium ion," exploitation of
1) and tetrahydroisoquinolines (THIQs 2a—d; Figure 1) carbanion methodology,16 and various enantioselective ap-
proaches.'”'® On the other hand, synthesis of THIQs involves

o P various multistep processes'”'® and few enantioselective

N N \N_/ \, Meo O ) o processes.”’ Although few elegant approaches to these targets
et R N | m hav? been reported, .ther.e ‘is st.ill a need to develop a
AN N O 4y oj Meo i) .stralghtforward synthesis of 1s01ndohnones‘ and THI(ls emp19y—
Ar= 3 4-iMePh ke o ing a common strategy from cheaply available simple starting
e e :a:‘:"::r'}‘t’;e;:;:lzz)(‘::;) Magalanesine (1) (+-crispine (2a) materials. Toward this end, we recently reported an eflicient

allylation—lactamization/alkylation®" cascade in the synthesis of
THIQ_alkaloid (+)-crispine 2a. Herein, we envisioned an
expeditious approach to these targets following a direct Lewis
acid catalyzed domino Mukaiyama—Mannich lactamization/
alkylation of o-formyl methylbenzoates 3 and o-formyl-2-

B e (Zb) (+) homoprotobererine (2¢)  (Jemetine (2d)  OMe arylethyl bromide 8 to afford isc;izndolinones 6 and 7 and
THIQs 9, respectively (Scheme 1).
Figure 1. Selected active isoindolinones and THIQs. Initially, we began our optimization studies by using o-formyl

methylbenzoate 3a and silyl enol ether 4a in the presence of
several potential catalysts to ultimately identify the most efficient
catalytic system. We used p-methoxyphenylamine (PMPNH,) as
an amine component so as to obtain PMP-protected compound
6a, which can be oxidatively cleaved,'®** leading to an N-
protecting group free isoindolinone. It was observed that 10 mol
dilatory,” antiviral,” and antileukemic'® activities makes them % (?f IH(QTf)3» ZH(QTf)z; and Cu(OTf)Z affqrded the expect-ed
attractive synthetic targets. Similarly, tetrahydroisoquinolines 1301nd9hnone 6a in 73—77% 1so.lated yields along with
(THIQs 2a—d)"" exist widely in alkaloids and, because of their uncy-cllzed 10a in 10__11% (entries 1-3, Table 1). We
fascinating biological activities, they also attract special synthetic envisioned that conversion of 10a to 6a may depend on

are important structural scaffolds from a synthetic perspective.
Substituted isoindolinones are useful advanced intermediates in
the synthesis of a variety of drugs' and complex natural
products.” Their biological properties such as antihypertensive,”
antipsychotic,4 anti—inﬂamm:.{tory,5 anesthetic,® antiulcer,” vaso-

interest.
Existing approaches toward isoindolinone synthesis include Received: April 23, 2015
Heck cyclization,12 Diels—Alder approach,13 ring-closure of Published: May 20, 2015
ACS Publications  ©2015 American Chemical Society 2780 DOI: 10.1021/acs.orglett.5b01197
)4 Org. Lett. 2015, 17, 2780-2783



Organic Letters

Scheme 1. Proposed Mukaiyama—Michael Lactamization/

Alkylation
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Table 1. Selected Optimization Studies®

e omws M(OTf),. CHCly [Me0. O FPMP P
@g , Ppn TBAF25C o ol o | L wewe
& (4a) 9 up to 92% H Lfo

2a) * PMPNH; (10a) &)y
(5al
Lewis acid time  10a (% yield) 6a (% yield)

entry (mol %) solvent (h) b v
1°  In(OTH, (10) CHClL 24 10 73
2°  zn(OTH), (10) CHCl, 24 11 77
3¢ Cu(OTf), (10)  CHC 24 10 76
4 m(OTf), (10)  CHCl, 35 0 76
s zn(OTf), (10) CHClL, 30 0 92
6 Cu(OTf), (10) CHCl, 28 0 90
7 Sc(OTf), (10) CHCl, 33 0 83
8  Bi(OTf,(10)  CHCl, 28 0 85
9. Zn(OTH,(3)  CHCl, 35 0 80
10 Cu(OTf),(5)  CHCL 35 0 79

“All of the reactions were performed with 1 equiv of aldehyde, 1 equiv
of amine, and 1.3 equiv of silyl enol ether under argon atmosphere.
bIsolated yields. “Reactions were carried out in the absence of TBAF.
Conditions A: 10 mol % of Zn(OTf),. Conditions B: 10 mol % of

Cu(OTf),.

inefficient deprotection of the N-silyl group, and thus, we
decided to use TBAF as an additive in the reaction. Following
exhaustive optimization (see the Supporting Information for
details), we found that 10 mol % of Zn(OTf), and Cu(OT¥),
furnished 6a in 90—92% yields (entries S and 6). Other metal
triflates such as In(OTf),, Sc(OTf),, and Bi(OT¥), also afforded
6a in 76—85% yields (entries 4, 7, and 8). A brief solvent studies
showed that chloroform was the most efficient (see the
Supporting Information for details). Gratifyingly, it was observed
that S mol % of Zn(OTf), and Cu(OTf), also afforded 6a in 79—
80% yields (entries 9 and 10). On the basis of optimization
studies, it was decided to carry out further studies using 10 mol %
of Zn(OTf), (conditions A) and Cu(OTf), (conditions B) in
combination with a stoichiometric amount of TBAF as an
additive in chloroform at rt. Interestingly, a gram-scale synthesis
of 6a under conditions A also afforded product in 75% (30 h)
isolated yield (see the Supporting Information), thus making the
strategy synthetically viable.

We then studied various amines in the domino Mukaiyama—
Mannich lactamization. Gratifyingly, all aromatic amines,
including electron-donating and electron-deficient ones, afforded
isoindolinones 6b—g in 76—92% isolated yields (Figure 2). The
X-ray structure analysis of 6d (CCDC no. 1057396)
unambiguously proved the formation of an isoindolinone
motif. Surprisingly, ortho-substituted anilines afforded only
Mukaiyama—Mannich products 10b,c in 71—89% yields,
probably indicating that the sterics at the o-position of the
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Figure 2. Scope of reaction with various amines.

anilines might be inhibiting the formation of isoindolinones.
Aliphatic amines such as allyl- and benzylamines were also found
to be good substrates to furnish 6h,i in 66—71% yields. However,
electron-deficient amines such as p-TsNH, and CbzNH,** were
not suitable for the one-pot process, and only starting aldehyde
3a was recovered in 85—89% yields.

Notably, 3,4-(methylenedioxy)aniline as amine partner
afforded isoindolinone 6l only in 40—46% yields. In this case,
however, we isolated quinoline 11a in 25—28% yields under
optimized conditions. Interestingly, 3,4-dimethoxyaniline, when
used as aromatic amine, afforded quinolines 11b,c as the sole
products in 78—86% yields (Figure 3). A proposed mechanism
for the synthesis of 1la—c involving Mukaiyama—Mannich
Friedel—Crafts alkylation—condensation followed by aerial
oxidation is shown in Scheme 2.*°
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Figure 3. Scope of reaction with various amines.

Scheme 2. Plausible Mechanism of Quinoline Synthesis
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Later, the Mukaiyama—Mannich lactamization was carried out
with differently substituted o-formyl methylbenzoate 3, silyl enol
ether 4a, and PMPNH, under both conditions A and B (Figure
4). To our delight, a variety of o-formyl methylbenzoates
containing various electronic natures at the 4- and 5-positions of
3 (Figure 4) afforded isoindolinones 7a—h in good to excellent
yields. In addition, electron-donating groups at the 3- and 6-
positions of 3 also afforded products 7i—I in synthetically useful
yields (65—89%, Figure 4).

DOI: 10.1021/acs.orglett.5b01197
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Figure 4. Substrate scope of isoindolinone synthesis.

Next, a variety of silyl enol ethers were selected for the domino
Mukaiyama—Mannich lactamization using different o-formyl
methylbenzoates 3 and PMPNH, (Figure 4). Rewardingly, silyl
enol ethers (see the Supporting Information for synthetic
details) of acetophenone derivatives furnished isoindolinones
7m-—r in synthetically useful yields. Silyl enol ethers of acetone
afforded products 7s,t in 64—72% yields. The silyl enol ether of
methyl acetate was also found to be a good substrate and afforded
7u—v in 72—85% vyields, which could be an advanced
intermediate for the synthesis of derivatives of medicinally
important la—c in a few steps (Figure 1). Gratifyingly, our
optimized strategy works fine with silyl enol ethers of 2-
hydroxyfuran and cyclohexanone, which afforded products 7w
and 7x in 60% (dr = 2.9:1) and 67% (dr = 5.5:1), respectively
(Figure 4).

Next, we became interested in applying our strategy in the
synthesis of C,-substituted THIQs (Figure 1). Toward this end,
we have utilized a variety of o-formyl-2-arylethyl bromides 8 in
the presence of a few silyl enol ethers and PMPNH, (Scheme 3).
To our delight, a variety of THIQs were synthesized under
optimized conditions A and B, where TBAF was not essential.
This is probably indicative of the high reactivity of the
intermediate Mukaiyama—Mannich product toward Sy* reac-
tions, and thus, reaction times were also reduced as compared to
isoindolinone synthesis. Our strategy can be applied further in
the eflicient synthesis of THIQs 9a—e in 78—87% isolated yields
(Scheme 3). In particular, THIQ 9d could be an advanced
intermediate for the syntheses of (+)-2a—c (Figure 1) following
further synthetic elaboration. However, for a direct synthesis of
(£)-2b,c, we synthesized silyl enol ethers of 3,4-dimethox-
yacetophenone and 3,4,5-trimethoxyacetophenone (see the
Supporting Information for procedure) and utilized them in
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Scheme 3. Substrate Scope of THIQ Synthesis

Br
~ oS LA, CHCly, 25 °C ={ N-R
X :_ + + RNH; ——— G 4 s}
= H o up to 88% X LI
® o ) (s) @ "
R R MeO Ar = Ph (%)
1 4 A:78%, 18 h
R 3 N-pup R W PMP Meq ~"-pn B:80% 18h
o O Ar = 3.4-diOMePh (9f)
(8a-b) \T’/O (8c-d) (9e-g) A: 88%, 18 h
Bh OMe Ar B: 85%, 18h
R=H(9a) R=0OMe(b) R=H(9c) R=0OMe 9d) A BONGBR (80
A:83%, 18h A:78%,18h  A:87%,12h A 82%, 12h A: 5%, 18 h o
B:85%, 18h B:80%,18h  B:85%,12h B:86% 12h 8 7% 18 h
MeO.
Pd-C, Ha (1 atm) HCHO, NaBH;CN
AcOH, TFA, 24 h, rt MeO _NH MeCN, 3 h, rt +(2b)
o) —— H k/ sine
75% (13) Ar 78%

Ar = 3 4-diOMePh

the synthesis of THIQs 9fg (65—88% yields in 18 h).
Gratifyingly, 9f was synthesized in gram scale under conditions
A, which afforded THIQ in 65% (24 h) yield (see the Supporting
Information). One of these THIQs, 9f, was then converted to 13
under reductive hydrogenolysis in the presence of a Pd—C,
AcOH/TFA mixture to afford 13 in 75% yield (Scheme 3). This
was later converted to (+)-2b in 78% yield following N-
methylation using HCHO and NaBH;CN, thus completing a
concise total synthesis of (+)-homolaudanosine (2b).

Further, isoindolinones 6a and 7m were reacted with CAN to
form {)rotecting group free 15ab in 85—89% yield (Scheme
4)."**! Unprotected isoindolinone 15b was converted to 17a in

Scheme 4. Synthetic Elaborations to Important Intermediates
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70% yield under the Baeyer—Villiger oxidation conditions.
Compound 15a was further reduced with NaBH,, followed by
treatment with methanesulfonic acid (MsOH), which afforded
16 in 85% yield over two steps (Scheme 4). The latter was then
hydrogenated to furnish medicinally important 1-alkylisoindoli-
none 17b in 96% yield.

In another sequence, isoindolinone 16 on reductive ozonolysis
afforded 17¢, which has hydroxymethyl functionality in 78%
yield (Scheme 4). The latter could be used for the syntheses of
(£)-1a—c shown in Figure 1. Finally, the reactivity of the
electron-donating PMP group of isoindolinone 6a was explored
in the synthesis of tetracyclic tetrahydroquinoline derivative 14
following a two-step sequence (87% overall yield) via NaBH,
reduction followed by treatment with methanesulfonyl chloride.

In summary, we have shown an efficient Mukaiyama—
Mannich lactamization/alkylation sequence for an expeditious
synthesis of a variety of isoindolinones and THIQs under mild
conditions. A variety of silyl enol ethers were utilized, and the

DOI: 10.1021/acs.orglett.5b01197
Org. Lett. 2015, 17, 2780—2783
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strategy is amenable to gram-scale syntheses of isoindolinone as
well as THIQs. Electron-rich anilines like 3,4-(alkyloxy)anilines
can afford substituted quinolines as well.”> Applying this strategy,
a concise total synthesis of (+)-homolaudanosine 2b has been
accomplished.

B ASSOCIATED CONTENT
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Experimental procedures and analytical data (‘H, *C NMR
spectra and HRMS) for all new compounds, and X-ray data for
6d (CIF). The Supporting Information is available free of charge
on the ACS Publications website at DOI: 10.1021/acs.or-
glett.5b01197.
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